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D Y N A M I C S  O F  T H E  F R A C T U R E  O F  

U N I D I R E C T I O N A L  G L A S S -  P L A S T I C  

M. V .  S t e p a n e n k o  UDC5.39.3+539.4 

The  dynamic  p rob lem of the concent ra t ion  of s t r e s s e s  and the subsequent  propagat ion  of a flaking c r a c k  
in unidirect ional  g h s s - p l a s t i c i s  cons idered .  A plane de fo rma t ion  is invest igated and the g l a s s - p l a s t i c  m a -  
t e r i a l  c o r r e s p o n d s  to the model  cons idered  in [1], i .e. ,  it is a s sumed  that  the a r m o r i n g  of the ffoer is in the 
uniaxial  s t r e s s e d  s ta te  ( e x t e n s i o n - c o m p r e s s i o n ) ,  and the f i l ler  (binding) is subjected only to a shear  s t r e s s .  

For  p r ac t i ca l  pu rposes  it is  impor tan t  to explain the fea tures  of the kinet ics  of c r a c k s  and the poss ib i l -  
ity of local iz ing them.  In this  paper  we solve these  p rob l ems  by a numer ica l  method,  which enables  us, with 
accep tab le  accu racy ,  to de s c r i be  the nons ta t ionary  wave p r o c e s s  of s t r e s s  concent ra t ion  and subsequent  f r a c -  
ture .  

The  p rob l em  of the dynamic  concent ra t ion  of s t r e s s e s  in the region of a defect  in a g l a s s - p l a s t i c  is  con-  
s ide red  in a l imi ted  number  of pape r s  (see ,  e.g. ,  [2, 3]). H e r e  we use the formula t ion  of the p rob lem given in 
[2], where  the solution of the dynamic p rob lem is obtained in the fo rm of the sum of a s e r i e s  with a finite 
number  of t e r m s ,  each  of which co r r e sponds  to the contr ibut ion of a wave re f lec ted  f rom a ce r t a in  f iber.  In 
[3] the p rob l em of approx imat ing  the dynamic  solution to the s ta t ic  solution with t ime is d iscussed .  It  is not 
poss ib le  to analyze the kinet ics  of f r a c t u r e  using analyt ica l  methods .  

The  formula t ion  of the p rob lem is as follows: A f iber  is s t re tched  to infinity with a constant  force ;  at 
z e r o  ins tant  of t ime ,  due to a ce r t a in  defect ,  one of the f ibers  instantaneously f r ac tu r e s ;  then the b roken  f ibe r  
begins  to be  unloaded, while the load on all  the o thers  is increased ,  the per turba t ions  f rom one rod  to another  
being t r a n s f e r r e d  by  shea r  waves  into the b inder ;  if we a s s u m e  that  the i nc rea se  in the load on al l  the f ~ e r s  
does not lead to the i r  f r ac tu re ,  f r ac tu re  can only occur  in the fo rm of longitudinal flaking c racks .  

We will  d i r ec t  the y coordinate  along the f iber ,  and the x coordinate  perpendicular  to it, and we will  
take the or ig in  of coordina tes  a t  the defect .  We will  take as  the unit of m e a s u r e m e n t  the quanti t ies which r e -  
la te  to the f i l ler :  the dens i ty  p ,  the shea r  modulus  G, the veloci ty  of shear  waves  c2 = G~-~p, and the d i s -  
tance  be tween f ibers  H ( H / c  2 is the unit of t ime) .  We will  introduce the following notation: Pl ,  E, and h a re  
the densi ty ,  Young's  modulus,  the th ickness  of the f iber  (c 1 = ~ / E / p ~  is the veloci ty  of sound in the f iber) ,  
t~ (y ,  t)  is the d i sp l acemen t  of the j - t h  f iber  (j = 0, • ~ 2 , . . . ) ,  v (x ,  y, t )  is the d i sp lacement  of~; point of 

e f i l le r ,  a j  = E 0 u j / 0 y ,  T = G 0 v / 0 x  a r e  the s t r e s s e s  in the f ibers  and the binder .  

The  g l a s s - p l a s t i c  is s t r e tched  to infinity with a s t r e s s  P. We will solve the p rob lem with r e s p e c t  to ad -  
di t ional  pe r tu rba t ions  due to b reak ing  of the f iber  (suppose this is the f iber  j = 0). The  equations in the d i s -  
p l acemen t s  and the boundary conditions have the fo rm (the initial  conditions a r e  the ze ro  conditions) 

~2v;~t ~- = a2v/ax2; (1) 

i 62z~: b2tt' 1 , 

c~ Or: ~y" 

~'(], y,  t) = uj(y,  t); (S) 

O u / 8 t  = - - P / E  (j = 0), u~ = 0 (] :/= 0):for y = 0, (4) 

Novosibi rsk .  T r a n s l a t e d  f rom Zhurnal  Pr ik ladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 4, pp. 155-163, 
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where  Qj is the fo rce  acting on the j - th  f iber  f rom the binder  side. 

We will  a s sume  that the b inder  begins to b r eak  a f te r  the shear  s t r e s s e s  exceed a ce r t a in  value Tp. The 
c r i t e r i o n  for f r ac tu re  to occur  a t  a ce r t a in  point of the binder  is the inequality 

�9 (z, v, t) > ~p. (5) 

Since we have assumed  that f ibers  with numbers  j ~ 0 do not break ,  the intensity of the shear  s t r e s s e s  
in the region {x { > 1 is smal l  compared  with the zone {x { ___ 1. Hence, we will  confine ourse lves  to invest i -  
gating the f r a c tu r e  by studying the flaking p roces s  in the zone ] x I _ 1. 

In view of the s y m m e t r y  we will  consider  a quar te r  of the plane. We will divide file possible regions of 
f r ac tu re  into th ree  (this subdivision is pure ly  conventional and is introduced for the sake of convenience):  The 
boundar ies  of the zone a r e  x = 0 and x = 1 ,  and the region 0 < x < 1. We will  consider  how the equations of 
the prob lem change if f r a c tu r e  occurs  in any of these  th ree  regions .  

1) The boundary x = 0. If at  a ce r t a in  point of the b inder  x = +0, y = Y0. a t  the instant of t i m e  to ,  
condition (5) is sat isf ied,  in Eq. (2) we mus t  put 

q~ = o (y  = y ~ , ,  t = t o , ) .  

At subsequent  instants of t ime (t > to,)  the following vers ions  of the development  of a f r ac tu re  a re  pos -  
s ible:  

a) The front  of the f r ac tu re  moves  along the f iber:  Flaking occurs  between the binder  and the f iber  and 
c r acks  a r e  fo rmed  l0 (t) _< y <_ l ~ ( t ) ,  where  l 0 and l~ a r e  the coordinates  of the ends of the c racks .  

In this case  we mus t  put in Eq. (2) 

Q, = 0 .(y ~ [l;, lo], t > to.), (6) 

while the boundary  condition for the b inder  (3) mus t  be  rep laced  by the condition that t he re  a re  no s t r e s s e s  
on the f ree  sur face  formed 

= 0 (x : + 0, v [ z ; ,  z l, t > 

b) When flaking occurs  (or without it) the f r a c t u r e  f ront  a lso moves  into the depth of the binder  in the 
d i rec t ion  x > 0. In this case ,  condition (6) for the fiber is not changed, but it  is n ece s sa ry  to impose condi-  
t ion (7) on the boundary between the f r ac tu red  and unfrac tured  regions of the binder ,  replacing the boundary 
condition (3) by the condition that the re  should be no s t r e s s e s  on the f ree  sur face  in f ront  of the f r ac tu re  
f ront  x = x*  (t, y)  

�9 = 0  (x =x* ,  v~[L;(z) , /o+(x) l ,  t >  to,). q ' )  

It should be noted that the coordinates  of the ends L0(x) , L~ (x) in (7 ')  may not be the same  as  10, l~ in (7). 

2) The boundary x = 1. As in case  1 )wehave  [below we will  not draw any par t icu lar  dist inction between 
ve r s ions  a) and b), cor responding  to case  1)] 

Ql:~l~=l+0 ( y ~ [ l ~ , / ~ ] ,  t~>tl . ) ;  (S) 

T = 0  ( x = l - 0 ,  y ~ [ l ; , l + ] ,  t • t l . ) ,  (9) 

where  t l .  is the beginning of f r ac tu re ,  and l ~ ( t ) ,  l~ ( t )  a re  the coordinates  of the ends of the c r ack  where  
the b inder  flakes away f rom the f i r s t  whole f iber.  

3) Suppose Ak(x,  y) a re  points inside the zone 0 < x <  1, in which at  the instants of t ime t ,  k condition 
(5) is achieved.  At these points when t >_ t , k ,  Eq- (1) no longer makes  sense,  and instead we must  introduce 
the condition 

�9 = 0 (x ,  y = A k ( x ,  y ) ,  t >~ t . ~ ) ,  (10) 

which will  s e rve  as  the boundary conditions for Eq. (1), de te rmined  for the whole ma te r i a l  (x, y ~ Ak(x,  y)).  

Express ions  (7), (9), and (10) on the f ree  boundary formed in the binder  by  the flaking c racks  or by the 
f r ac tu re  f ront ,  we re  wr i t ten  on the assumption that the conditions under which the model used is applicable 
a r e  sat isf ied (the deformat ions  a re  shear  deformat ions  and they a re  small)  and, in addition, during f r ac tu re  
no r e ve r s ib l e  phenomena occur  on the sur faces  formed,  in other words ,  the law of state for  the binder  is a s -  
sumed to hold at  al l  points of the la t ter  including the boundary.  
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An invest igat ion of the p r o c e s s e s  that  occur  in the reg ion  occupied by the f r ac tu red  m a t e r i a l  is outside 
the f r a m e w o r k  of this pape r  and will  not be  cons ide red  here .  

We will  note some  c h a r a c t e r i s t i c  fea tu res  of the behav io r  of the des i r ed  solution. When the wave p r o -  
ce s s  p ropaga tes  f rom the neighborhood of the defect  into the depth of the g l a s s - p l a s t i c  m a t e r i a l  a complex 
in t e r f e r ence  pa t t e rn  is produced. The  main  port ion of the energy  is t r a n s f e r r e d  by the shear  waves ,  which, 
be ing pa r t i a l ly  r e f l ec ted  f r o m  the f iber  as f rom a movable  boundary,  t r a n s f e r  p a r t  of the energy  into longi-  
tudinal  mot ions  of the f ibers .  The  la t te r  in tu rn  rad ia te  shear  waves  into the b inder ,  and the reg ion  occupied 
by  the pe r tu rba t ions  i n c r e a s e s ,  until at  a c e r t a i n  (large) d is tance  f rom the reg ion  of the defect  ( fo rmer ly  at  
infinity) the wave p r o c e s s  is p rac t i ca l ly  attenuated. 

The  s t r e s s  waves  in the f ibers  and the b inder  have a mul t i s tep  fo rm,  sect ions  of smooth  change of the 
solution a l t e rna te  with discont inui t ies ,  conveyed by the r e f l ec t ed -wave  fronts ,  and the ampli tudes  of the jumps 
on the f ronts ,  due to mul t ip le  in te rac t ion  with one another ,  do not have an o rde red  s t ruc tu re .  

Equations (1) and (2) with boundary conditions (3) and (4) and the addit ional conditions as r ega rds  the 
flaking (5)-(10), which desc r ibe  this p ic ture ,  w e r e  solved numer ica l ly .  

In o rde r  to de s c r i be  the wavef ron ts  with acceptab le  accu racy  the p a r a m e t e r s  of the d i f ference  gr id  ( At, 
~x ,  Ay) were  chosen in o rde r  to min imize  the numer ica l  d i spe r s ion  [5]. In the plane p rob lem of the dynamic  
theory  of e las t i c i ty  it is quite difficult  to min imize  the numer i ca l  d i spers ion .  The  model  of the med ium in-  
ves t iga ted  is a c e r t a i n  degenera te  case  of the plane problem.  It differs  f rom the la t te r  in that  although the 
f ronts  of the longitudinal and shear  waves  propagate  with the s ame  veloci t ies  c 1 and c2, these  two types of 
waves  in t e rac t  only along the s t ra igh t  lines de te rmined  by the f ibers ,  and not over  the whole region occupied 
by the per tu rba t ions .  Due to the p rope r t i e s  of the model  used it is poss ib le  to min imize  the numer ica l  d i s -  
pe r s ion  quite effect ively .  

On the b a s i s  of a ha rmonic  ana lys i s  i t  can  be  shown that  the group ve loc i t ies  of the h igh- f requency  c o m -  
ponents (in the l imi t  w -~ ~o ), forming the f r ac tu re ,  will  be identical  in the d i f ferent ia l  and di f ference  models ,  
if the p a r a m e t e r s  of the gr id  sa t i s fy  the following condition: 

At = hx ~ c~ 1 hy. (11) 

In this case ,  the reg ion  of dependence of the f in i te -d i f fe rence  equations coincides with the region of de -  
pendence of the initial  equations (1) and (2). Equation (11), however ,  cont rad ic t s  the stability- conditions of the 
expl ici t  s c h e m e  obtained in the fo rm of the following inequali t ies:  

At ~-~ Ax, c ~ t  <~ hy(l -~ hx/zt) -~/2, r -= plh, (12) 

where  ~ is the m a s s  of the f iber  r e f e r r e d  to the m a s s  of the binder .  In o rde r  to min imize  the numer ica l  d i s -  
pe r s ion  and to sa t i s fy  the s tabi l i ty  condit ions,  we m u s t  designate  the l imit ing va lues  of the inequality (12) for 
fixed At with spa t ia l  s teps  z~x and z~y 

Ax = St ,  Ag = c~ht( l  A- At/vt) ~/2. (13) 

It should be  noted that  the numer i ca l  d i spe r s ion  which r e m a i n s  in this case  in the d i f ference  a lgor i thm 
is introduced sole ly  by the wave p r o c e s s e s  which propaga te  in the f ibers .  
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When choosing the grid in the form (13) two independent parameters remain in the numerical algorithm, 
namely, the parameter of the grid At (or AX) and the parameter a, characterizing the inertial properties of 
the glass-plastic. Byreducingthe value of At for fixed a, we can ensure that the effects of numerical dis- 
persion do not, in practice, appear. At the same time, however, when At is reduced the volume of the com- 
puter memory required to investigate the wave process in times sufficient for fractures to develop and be- 
come localized increases. Hence, it is necessary to choose a certain optimum value for At. Calculations 
showed that when Ax/cz = At/~ _ 0.025 the numerical and analytical results are in fairly good agreement: 
The intensities of the fronts can be calculated with an error of not more than 5% (calculations with At/a = 
0.005 give a disagreement only in the third-fourth places). The above related to calculations of the discon- 
tinuities, the smooth components of the solution can be accurately calculated in practice. 

In Fig. la for ~ = 2 and At = 0.05 we show the shear stresses at a point of the binder closest to the 

point where the zeroth fiber fractures (T0.0 = T IX=0, y=0). The numerical and analytical results are prac- 
tically identical (they are not distinguishable on the scale shown), but some disagreement is observed in the 
small neighborhood of even values of t - in the region of the fractures. The nature of the disagreement is 
shown in Fig. lb (the continuous line is the analytical solution [3], and the crosses are the numerical solution). 

To economize on the computer memory the rectangular region, occupied by the glass-plastic, was re- 
placed by a triangular region with a fictitious boundary on the hypotenuse. The position of this boundary de- 
pended on the value of T (T = nAt, where n is the number of time steps) and was chosen so that during the 
time Tthewaves reflected from the fictitious boundary do not reach the region in which the process of inter- 
est is calculated. 

We will present some of the calculation data and analyze them. In Fig. 2, for Tp = 1.8, and ~ = 2 (At = 
0.05) the dashed lines show the stresses ~x,y (X = 0.i; y = 3Ay, 5Ay, 10Ay) after flaking has occurred. The 
flaking cracks cease to grow when t = 4. Their parameters are to, = 0.05, tl. = 1.05, Y0* = YI* = 10 = [i = 
0, l~ = II + -- 3Ay. The continuous lines show the stresses when there is no fracture (Vp > Vmax, where Vma x 
are the maximum stresses in the binder). 

It should be noted that the sign of the fracture at Tx,y for y > 0 changes with time, and the envelope of 
the sharp peaks is a smooth alternating sign function which decreases as t increases. In turn, as y increases 
the maximum value of the fracture also decreases and the stresses approach the static value fairly rapidly 
(for their y values). These static values are the same for r0,y and Vl,y [4]. It canbe seen from Fig. 2 that 
an essential difference in the operation of the material on flaking and without this is observed at a compara- 
tively small distance from the fracture zone. This difference is characterized by the fact that when flaking 
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occurs  the peaks of the s t r e s s e s  a re  much  higher ,  and the discontinuities change sign for large  values of 
t ime. The qualitative picture o f  the s t r e s s  distr ibution remains  the same. It can be seen that for y = 10Ay 
the difference between these two cases  is compara t ive ly  small .  

In Fig. 3a, for ~ = 20, At = 0.1, and r p  = 1.25 we show the development with t ime of the flaking 
c r acks  of the binder  f rom the to rn  fiber 0 and the f i r s t  whole fiber 1, the c r o s s e s  showing the ends of the 
c racks ;  t 0 , =  4.1, t l ,  = 5.1, l o = l 1 = Y0* = Yl* = 0, l~ = 20Ay,  ll += 19Ay. For  to** = 12.7 and t l * * =  
13.8 the c racks  cease  to grow, and the f rac tu re  ceases .  The motion of the c racks  occur~ in jumps. We can 
follow this p rocess  using the example of the c r ack  l 0- F rac tu re  begins at  t = to .  when the s t r e s s e s  ~0,0 ex-  
ceed ~p; a c rack  of length Ay is formed. Fur the r ,  for 4.1 < t < 6.0 the s t r e s s e s  70,y >Ay remain  less  than 
Tp, and the c rack  "s tays"  in its place. After  this t ime the "breaking"  peak of the s t r e s se s ,  ref lected f rom a 
whole fiber and t r ans fe r r ing  par t  of its energy to it, a r r i ve s  at  the point x = 0, y = Ay, and the increase  in 
the c r ack  r ecommences .  At subsequent instants of t ime (t = 6.0 + n a t  (n = 1 , . . .  ,7)) the ' b reak ing"  peaks 
a r r i v e  at  points of the binder lying next to the broken fiber with coordinates  x = 0, y = in + 1 ) Ay., and the 
c r ack  inc reases  v igorously  (with veloci ty c 1 ) to a value l = 9 Ay and for t = 6.7 ceases .  Then when t >_ 6.9 
it i nc reases  fur ther  to l = 12 Ay. At this distance until the instant of t ime t = 7.1 the intensity of the "b r eak -  
Lug" peak becomes  less  than Tp, and the c r ack  stays for 7.1 < t < 9.1. For  t >_ 9.1 a rapid increase  in the 
c r ack  again begins (with veloci ty c 1 ), and the p rocess  descr ibed  is repeated until the c rack  finally does not 
stop: For  t > 12.7 the shear  s t r e s s e s  at  the points y > l~ do not reach  the values Tp. The c rack  l I moves in 
the same way as the increase  in the c rack  l 0- 

Two opposing fac tors  affect  the growth and cessa t ion of the c racks :  On the one hand, the s t r e s s  peaks 
attenuate with distance f rom the f rac ture  at  the defect  point, which helps the f rac ture  to stop, and on the other 
hand, due to flaking, the average  level of the s t r e s s e s  in the f ibers  increases ,  and the amplitudes of the peak 
values of the shear  s t r e s s e s  in the depth of the binder increase.  The f rac ture  ceases  when the f i rs t  of these 
fac tors  prevai ls .  

F igure  3b shows the dependence of the f r ac tu re  zone (-I = (l~ + 1 ~ ) / 2 )  of Tp (~ = 20, At = 0.1). The 
curve  shown is obtained by success ive  calculat ions for 1.1 ~ Tp -- ~max (~max = 1.6 a r e  the maximum 
shear  s t r e s s e s  in the binder) with a step Tp of 0.05. The qualitative picture of the increase  in the c racks  for 
different  r p  ag rees  with that for r p  = 1.25. These  calculat ions enable one to es t imate  the average  veloci ty 
of motion of the c racks  

Yav = ~ L to** + ~ ~ 

For  the case  ~ = 20, for example,  Vav dec rea se s  a s  Tp inc reases .  In the above range of values of 
Tp the values of Vav va ry  respec t ive ly  f rom 0.28 cl to 0.13 c 1. 

It should be noted that  the d iscre te  scheme of the propagation of a f rac ture  does not detect  tile o c c u r -  
rence  or  cessa t ion  of a f rac tu re  inside the range 0 < x < 1 (case 3). This is due to the following features of 
the use of the f rac ture  c r i t e r ion  in the numer ica l  algori thm. Suppose that when t = t*  the "breaking" peak 
reaches  the point x*, y (0 < x* < 1}. At the instant t* + At (in the d i sc re te  f rac tu re  scheme it occurs  af ter  a 
finite t ime of At) at  this point the f rac ture  conditions are  real ized,  and since until the c r i t e r ion  is satisfied 
the grid functions a r e  reca lcula ted  f rom t ime layer  t* - At and t* to the layer  t* + At, according to the 
wave equation (1), the peak considered at  the instant of t ime t = t* + At appears  at  the point x*+  Ax, y (for 
mot ion of the wave in the positive direction} or at  the point x* - Ax, y otherwise. Hence, the f rac ture  moves 
with unit velocity,  not stopping until the fiber. Since the maximum peaks appear in the s t r e s s  wave on r e f l ec -  
tion f rom the f ibers ,  the f rac ture  also begins at  the join of 1he fiber and the binder. 
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A redis t r ibut ion  of the s t r e t c h i n g - c o m p r e s s i o n  s t r e s s e s  in the f ibers occurs  during flaking (compared 
with the s t r e s s e s  when there  is no f rac ture  for T u > r m a x  (t > 0)): In the broken fiber (j = 0) the s t r e s s e s  
(compression} increase ,  and in the whole f ibers  t~ey a re  reduced (stretching}. If when rp > Tma x in the f i r s t  
whole fiber the maximum loading is ~1.55 P and is reached at the point y = 0 [3], then for r p _  < ~max when 
vp is reduced this value falls. In Fig. 4 we show values of the s tretching s t r e s s e s  at  the point y = 0 of the 
f i r s t  whole fiber (at ,0),  calculated for the following pa ramete r s -  a - ~  = 2, and At = 0.05, b -  ~ = 20, and 
At = 0.1. The continuous lines denote s t r e s s e s  when there is no flaking (~p > Tmax),  the lines with the points 
a r e  7p = 1.8 and 1.4, and the lines with the c r o s s e s  a re  r p  = 1.35 and 1.25 (Fig. 4a and b, respectively}. The 
value r = (4/3)P cor responds  to the value of~ 1,0 in the static problem [4] and is independent of c~. When a = 20 the 
maximum values of al,0 a re  attained when t = 12.5 and 13.4 (Tp = 1.4 and 1.25, respectively).  

It should be noted that  during flaking the d iagram of the s t r e s s e s  in the region 0 _< y _< l ~ is s t raightened 
out, and f rac ture  of the fiber (when the s t r e s s e s  r each  a cer ta in  l imiting value} is possible at  any point of this 
range.  Figure  5 shows, for a = 20~ At = 0.1 and Tp = 1.35, graphs of the s t r e s s e s  a l ,y  at  cer ta in  instants of 
t ime (the numbers  on the right}.  It can  be seen how the nature of the curves  changes af ter  the beginning of 
flaking ( t t .  = 5.1, l~ = 0, l~ = 14Ay, t l** = 12.2). Calculations showed that in the next whole f ibers ( I J I > 1) 
the s t r e s s e d  state  when there  is flaking is prac t ica l ly  the same as without it. 

In [6] it yeas shown exper imental ly  (the ma te r i a l  of the fiber was glass and the fi l ler  was epoxy resin}, 
that  f rac tu re  of g l a s s - p l a s t i c  is init ially accompanied by flaking c racks ,  after  which at a ce r ta in  distance (of 
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the o r d e r  of l ~) f r o m  the axis  of s y m m e t r y  (y = 0) b reak ing  of a whole f iber  occurs .  

The  r e s u l t s  of  the above ca lcula t ions  a r e  in qual i ta t ive a g r e e m e n t  with the conclusions obtained f r o m  
expe r imen t s .  

The  author  thanks A. M. Mikhailov for  useful  d i scuss ions .  
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F R E E  T O R S I O N A L  O S C I L L A T I O N S  

S T A N D A R D  L I N E A R  B O D Y  

OF A 

P .  M.  G o r b u n o v  UDC539.3 

One of the p rob l em s  of the t o r s iona l  osc i l la t ions  of a m e t a l  re lax ing  rod  is cons idered  in [1]. The b e -  
hav ior  of the s y s t e m  in a t ime  t is c h a r a c t e r i z e d  by a function ~ ( z ,  t ) ,  which defines the angle of ro ta t ion  
a round  the axis  of the rod of an infinitely thin hor izonta l  l aye r  of  m a t e r i a l .  The init ial  equation for the r e l a x -  
at ion t ime  T -* oo r educes  to a wave - type  equation which d e s c r i b e s  the mot ion of an ideal ized e las t ic  m a t e r i a l  
[2, 3]. 

However ,  the solution obtained in [1] as  �9 - -  ~ is independent of the t ime ,  and hence does not ag ree  with 
the solut ion of the s i m i l a r  p rob lem for absolu te ly  e las t i c  m a t e r i a l s  [4]. This  is due to the fact  that  when 
fo rmula t ing  the ini t ial  and boundary  conditions in [1], z e ro  initial  va lues  of the veloci ty  and acce l e r a t i on  of 
the mot ion of the s y s t e m  were  a s s u m e d  for t = 0 over  the whole spec imen ,  whe rea s  f rom the phys ica l  point 
of v iew mot ion  of the s y s t e m  is only poss ib le  if  i ts  a cce l e r a t i on  is d i f ferent  f rom zero .  

We will  cons ider  the f r ee  t o r s iona l  osc i l la t ions  of a cyl indr ica l  uni form iso t ropic  v i scoe la s t i c  rod of 
rad ius  R and length h >> 2R, and a connected r ig id  disk. We will  a s s u m e  that  the ampli tude of the to r s iona l  
osc i l la t ions  of the d i s t r ibu ted  m a s s  is sma l l ,  the t r a n s v e r s e  c r o s s  sec t ions  S (z) of the rod  a r e  not d is tor ted ,  
and a r e  not  d i sp laced  along the z axis  (S(z)  = cons t ) ,  and the to r s ion  is not accompanied  by a change in the 
volume of the de fo rmed  m a s s  [1]. The  z axis  of a cy l indr ica l  s y s t e m  of coordina tes  (r ,  ~, z) coincides with 
the axis  of the rod. To  de t e rmine  the ini t ial  s ta te  of the s y s t e m  we will  a s s u m e  that before  s ta r t ing  the pendu-  
lum the rod is twis ted about  the z axis  by  the continuous t o r s iona l  m o m e n t  of a pa i r  of fo rces  P concentra ted  
on the boundary  S (z = h) .  Suppose that  during a fa i r ly  l a rge  instant  of t ime  t~ the rod  r eaches  i ts  initial  
s t a t i ca l ly  loaded s ta te .  Then,  for t _ t o the t o r s iona l  m o m e n t  of  the fo rces  (PRo) will  be  constant  over  the 
whole a r e a  of ex i s tence  of the de fo rmed  m a s s  0 _< z _ h, and is defined in the fo rm 

PRo = ~ mo~ (z)/Oz~ (I) 

where  ~ ( z )  is  the angle of  ro ta t ion  of the c r o s s  sec t ions  S(z)  (around the z axis) for a s ta t ica l ly  twisted 
s ta te  of the rod. If  when t I _> t o the fo rces  P a r e  s imul taneous ly  and instantaneously r emoved ,  the connected 
d i sk  begins  to change into a s ta te  of ro ta t iona l  mot ion  around the z axis .  We will  a s s u m e  that  the re laxa t ion  
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